Historic Document Image De-noising Using Principal Component Analysis (PCA) and Local Pixel Grouping (LPG)
نویسندگان
چکیده
In this paper, an approach of principal component analysis (PCA) with local pixel grouping (LPG) is used to de-noising the noisy historical document image. This technique ensures the preservation of historic document image local structure. This is due to block matching based LPG which carries out classification to allow only the sample blocks with similar contents used in the calculation for PCA transform estimation. Such an LPG procedure ensures that the image local features can be well preserved after the noise removing process in the PCA domain. The LPG-PCA de-noising procedure will repeat one more times with adaptively adjusted noise level to further improve the performance of de-noising the historic document image. The experiment results show that LPG-PCA model has good results in de-noising historical document image.
منابع مشابه
Two-stage image denoising by principal component analysis with local pixel grouping
This paper presents an efficient image denoising scheme by using principal component analysis (PCA) with local pixel grouping (LPG). For a better preservation of image local structures, a pixel and its nearest neighbors are modeled as a vector variable, whose training samples are selected from the local window by using block matching based LPG. Such an LPG procedure guarantees that only the sam...
متن کاملPCA Based Image Enhancement in Wavelet Domain
This paper demonstrates a methodology of image enhancement that uses principle component analysis (PCA) in wavelet domain. PCA fully de-correlates the original data set so that the energy of the signal will concentrate on the small subset of PCA transformed dataset. The energy of random noise evenly spreads over the whole data set, we can easily distinguish signal from random noise over PCA dom...
متن کاملDual Polynomial Thresholding for Transform Denoising in Application to Local Pixel Grouping Method
Thresholding operators have been used successfully for denoising signals, mostly in the wavelet domain. These operators transform a noisy coefficient into a denoised coefficient with a mapping that depends on signal statistics and the value of the noisy coefficient itself. This paper demonstrates that a polynomial threshold mapping can be used for enhanced denoising of Principal Component Analy...
متن کاملImage Enhancement by Wavelet with Principal Component Analysis
This paper demonstrate the dimensionality of image sets with Wavelet using principal component analysis on wavelet coefficients to maximize edge energy in the reduced dimension images. Large image sets, for a better preservation of image local structures, a pixel and its nearest neighbors are modeled as a vector variable, whose training samples are selected from the local window by Local Pixel ...
متن کاملPCA based image denoising
Principal component analysis (PCA) is an orthogonal transformation that seeks the directions of maximum variance in the data and is commonly used to reduce the dimensionality of the data. In image denoising, a compromise has to be found between noise reduction and preserving significant image details. PCA is a statistical technique for simplifying a dataset by reducing datasets to lower dimensi...
متن کامل